匹诺塞林的神经保护作用机制研究进展

王玉敏, 葛永利, 赵丽楠, 赵伟丽, 杜冠华, 王洪权

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (4) : 245-248.

PDF(962 KB)
PDF(962 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (4) : 245-248. DOI: 10.11669/cpj.2018.04.001
综述

匹诺塞林的神经保护作用机制研究进展

  • 王玉敏1a, 葛永利2, 赵丽楠1b, 赵伟丽1c, 杜冠华3*, 王洪权1c,3*
作者信息 +

Recent Progress in Understanding the Mechanism of Neuroprotective Effect of Pinocembrin

  • WANG Yu-min1a, GE Yong-li2, ZHAO Li-nan1b, ZHAO Wei-li1c, DU Guan-hua3*, WANG Hong-quan1c,3*
Author information +
文章历史 +

摘要

匹诺塞林(pinocembrin)化学名为5,7-二羟基黄烷酮,是从蜂蜜,蜂胶,姜,野生马郁兰等提取的一种黄酮类化合物,具有抗氧化、抗炎、血管舒张等多方面的作用。其在体内外具有广泛的神经保护作用。笔者就匹诺塞林在脑缺血和神经退行性疾病中的神经保护作用进行了综述,总结了其在动物及细胞实验水平的药理学活性、可能的神经保护作用机制。

Abstract

Pinocembrin (5, 7-dihydroxyflavanone), a flavanone, is a natural flavonoid compound extracted from honey, propolis, ginger roots, wild marjoram, and other plants. In preclinical studies, it has shown to have neuroprotective effects as well as the ability to reduce reactive oxygen species, protect the blood-brain barrier, modulate mitochondrial function, and regulate apoptosis. Considering these a variety of pharmacological activities, pinocembrin has potential as a drug to treat ischemic stroke and neurodegenerative disease. Its pharmacologic characteristics are summarized and mechanistic details relating preclinical studies are discusses.

关键词

匹诺塞林 / 脑卒中 / 神经退行性疾病 / 神经保护

Key words

pinocembrin / stroke / neurodegenerative disease / neuroprotection

引用本文

导出引用
王玉敏, 葛永利, 赵丽楠, 赵伟丽, 杜冠华, 王洪权. 匹诺塞林的神经保护作用机制研究进展[J]. 中国药学杂志, 2018, 53(4): 245-248 https://doi.org/10.11669/cpj.2018.04.001
WANG Yu-min, GE Yong-li, ZHAO Li-nan, ZHAO Wei-li, DU Guan-hua, WANG Hong-quan. Recent Progress in Understanding the Mechanism of Neuroprotective Effect of Pinocembrin[J]. Chinese Pharmaceutical Journal, 2018, 53(4): 245-248 https://doi.org/10.11669/cpj.2018.04.001
中图分类号: R741.05   

参考文献

[1] VILLANUEVA V R, BARBIER M, GONNET M, et al. The flavonoids of propolis. Isolation of a new bacteriostatic substance: pinocembrin (dihydroxy-5, 7 flavanone)[J]. Ann Inst Pasteur (Paris), 1970, 118 (1): 84-87.
[2] LIU Y L, HO D K, CASSADY J M, et al. Isolation of potential cancer chemopreventive agents from Eriodictyon californicum [J]. J Nat Prod, 1992, 55 (3): 357-363.
[3] YUAN Y, YANG Q Y, TONG Y F, et al. Synthesis and enantiomeric resolution of (+/-)-pinocembrin [J]. J Asian Nat Prod Res, 2008, 10(9-10): 999-1002.
[4] RASUL A, MILLIMOUNO F M, ALI E W, et al. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities[J]. Biomed Res Int, 2013, 2013: 379850.
[5] WEISSHAAR B, JENKINS G I. Phenylpropanoid biosynthesis and its regulation [J]. Curr Opin Plant Biol, 1998, 1 (3): 251-257.
[6] MIYAHISA I, FUNA N, OHNISHI Y, et al. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli [J]. Appl Microbiol Biotechnol, 2006, 71 (1): 53-58.
[7] YAN Y, KOHLI A, KOFFAS M A. Biosynthesis of natural flavanones in Saccharomyces cerevisiae [J]. Appl Environ Microbiol, 2005, 71 (9): 5610-5613.
[8] KIM B G, LEE H, AHN J H. Biosynthesis of pinocembrin from glucose using engineered Escherichia coli [J]. J Microbiol Biotechnol, 2014, 24 (11): 1536-1541.
[9] METZNER J, BEKEMEIER H, SCHNEIDEWIND E M, et al. Pharmacokinetic studies of the propolis constituent pinocembrin in the rat (author′s transl)[J]. Pharmazie, 1979, 34 (3): 185-187.
[10] SAAD M A, ABDEL S R M, KENAWY S A, et al. Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion [J]. Pharmacol Rep, 2015, 67 (1): 115-122.
[11] WU C X, LIU R, GAO M, et al. Pinocembrin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress induced apoptosis [J]. Neurosci Lett, 2013, 546: 57-62.
[12] LIU R, GAO M, YANG Z H, et al. Pinocembrin protects rat brain against oxidation and apoptosis induced by ischemia-reperfusion both in vivo and in vitro [J]. Brain Res, 2008, 1216: 104-115.
[13] ZHAO G, ZHANG W, LI L, et al. Pinocembrin protects the brain against ischemia-reperfusion injury and reverses the autophagy dysfunction in the penumbra area [J]. Molecules, 2014, 19 (10): 15786-15798.
[14] GAO M, ZHU S Y, TAN C B, et al. Pinocembrin protects the neurovascular unit by reducing inflammation and extracellular proteolysis in MCAO rats [J]. J Asian Nat Prod Res, 2010, 12 (5): 407-418.
[15] GAO M, LIU R, ZHU S Y, et al. Acute neurovascular unit protective action of pinocembrin against permanent cerebral ischemia in rats [J]. J Asian Nat Prod Res, 2008, 10 (5-6): 551-558.
[16] MENG F, LIU R, GAO M, et al. Pinocembrin attenuates blood-brain barrier injury induced by global cerebral ischemia-reperfusion in rats [J]. Brain Res, 2011, 1391: 93-101.
[17] SHI L L, CHEN B N, GAO M, et al. The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats [J]. Life Sci, 2011, 88 (11-12): 521-528.
[18] GUANG H M, DU G H. Protections of pinocembrin on brain mitochondria contribute to cognitive improvement in chronic cerebral hypoperfused rats [J]. Eur J Pharmacol, 2006, 542 (1-3): 77-83.
[19] WANG S B, PANG X B, GAO M, et al. Pinocembrin protects rats against cerebral ischemic damage through soluble epoxide hydrolase and epoxyeicosatrienoic acids [J]. Chin J Nat Med(中国天然药物杂志), 2013, 11 (3): 207-213.
[20] JIN X, LIU Q, JIA L, et al. Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells [J]. Cell Mol Neurobiol, 2015, 35 (3): 323-333.
[21] DE OLIVEIRA M R, PERES A, GAMA C S, et al. Pinocembrin provides mitochondrial protection by the activation of the Erk1/2-Nrf2 signaling pathway in SH-SY5Y neuroblastoma cells exposed to paraquat [J]. Mol Neurobiol, 2017,54(8):6018-6031.
[22] WANG Y, GAO J, MIAO Y, et al. Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway [J]. J Mol Neurosci, 2014, 53 (4): 537-545.
[23] WANG H Q, WANG Y M, ZHAO L N, et al. Pinocembrin attenuates MPP(+)-induced neurotoxicity by the induction of heme oxygenase-1 through ERK1/2 pathway [J]. Neurosci Lett, 2016, 612: 104-109.
[24] LIU R, LI J Z, SONG J K, et al. Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits [J]. Neurobiol Aging, 2014, 35 (6): 1275-1285.
[25] LIU R, WU C X, ZHOU D, et al. Pinocembrin protects against β-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis [J]. BMC Med, 2012, 10: 105.
[26] LIU R, LI J Z, SONG J K, et al. Pinocembrin protects human brain microvascular endothelial cells against fibrillar amyloid-β(1-40) injury by suppressing the MAPK/NF-κB inflammatory pathways [J]. Biomed Res Int, 2014, 2014: 470393.
[27] WANG Y, MIAO Y, MIR A Z, et al. Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells [J]. J Neurol Sci, 2016, 368: 223-230.
[28] WANG W, JIANG B, SUN H, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults [J]. Circulation, 2017, 135 (8): 759-771.
[29] MOZAFFARIAN D, BENJAMIN E J, GO A S, et al. Executive summary: heart disease and stroke statistics--2016 update: a report from the american heart association [J]. Circulation, 2016, 133 (4): 447-454.
[30] ITOH K, CHIBA T, TAKAHASHI S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements [J]. Biochem Biophys Res Commun, 1997, 236 (2): 313-322.
[31] ITOH K, WAKABAYASHI N, KATOH Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain [J]. Genes Dev, 1999, 13 (1): 76-86.
[32] NGUYEN T, YANG C S, PICKETT C B. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress [J]. Free Radic Biol Med(Free Radic Biol Med), 2004, 37 (4): 433-441.
[33] LYAKHOVICH V V, VAVILIN V A, ZENKOV N K, et al. Active defense under oxidative stress. The antioxidant responsive element [J]. Biochemistry (Mosc), 2006, 71 (9): 962-974.
[34] BAIRD L, DINKOVA-KOSTOVA A T. The cytoprotective role of the Keap1-Nrf2 pathway [J]. Arch Toxicol, 2011, 85 (4): 241-272.
[35] STEWART J D, HENGSTLER J G, BOLT H M. Control of oxidative stress by the Keap1-Nrf2 pathway [J]. Arch Toxicol, 2011, 85 (4): 239.
[36] WANG Y M, WANG Y H, DU G H, et al. Research progress of targeting HO-1/NOX2 pathway for the treatment of Parkinson′s disease [J]. Chin Pharm J(中国药学杂志), 2015, 50(23): 2024-2027.
[37] WANG Y M, CHENG L, CUI Q F, et al. The research progress of targeting Nrf2/ARE signaling pathway for the neuroprotective effect of sulforaphane [J]. Chin Pharm J(中国药学杂志), 2016,51(17): 1445-1449.
[38] DE OLIVEIRA M R, DA C F G, BRASIL F B, et al. Pinocembrin suppresses H2O2-induced mitochondrial dysfunction by a mechanism dependent on the Nrf2/HO-1 axis in SH-SY5Y cells [J]. Mol Neurobiol, 2017,doi:10.1007/s12035-016-0380-7.
[39] DE OLIVEIRA M R, PERES A, FERREIRA G C. Pinocembrin attenuates mitochondrial dysfunction in human neuroblastoma SH-SY5Y cells exposed to methylglyoxal: role for the Erk1/2-Nrf2 signaling pathway [J]. Neurochem Res, 2017,42 (4): 1057-1072.

基金

国家自然科学基金资助项目(81260196,81450036);中国博士后科学基金(2015M570974);内蒙古自然科学基金资助项目(2015BS0812,2017MS0867,2017MS0868); 内蒙古自治区高等学校科学研究项目资助(NJZY234);内蒙古自治区高等学校青年科技英才支持计划资助(NJYT-17-B23);“草原英才”工程计划资助项目;“内蒙古自治区青年创新人才”计划资助项目;内蒙古自治区新世纪321人才工程计划资助项目
PDF(962 KB)

121

Accesses

0

Citation

Detail

段落导航
相关文章

/